Scalable Text Processing with MapReduce

Jimmy Lin The iSchool University of Maryland

Saturday, July 19, 2008 2008 New Frontiers in Computing Technology

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Introduction

 In text processing, we've seen the emergence and dominance of:

- Empirical techniques
- Data-driven research

• Must scale up to larger datasets, or else:

- Uninteresting conclusions on "toy" datasets
- Ad hoc workarounds (e.g., approximations)
- Unreasonably long experimental turnaround

• How do we *practically* scale up?

- Managing concurrency is difficult
- Clusters are expensive

How much data? • Wayback machine has ~2 PB (2006) • Google processes 20 PB a day (2008) "all words ever spoken by human beings" ~ 5 EB • CERN's LHC will generate 15 PB a year (2008) NOAA has ~1 PB climate data (2007)

What to do with more data?

Answering factoid questions

- Pattern matching on the Web
- Works amazingly well

Who shot Abraham Lincoln? \rightarrow X shot Abraham Lincoln

Learning relations

- Start with seed instances
- Search for patterns on the Web
- Using patterns to find more instances

(Brill et al., TREC 2001; Lin, ACM TOIS 2007) (Agichtein and Gravano, DL 2000; Ravichandran and Hovy, ACL 2002; ...) iSchool 🍪 MARYLAND

Scaling Up: Present Solution

- Divide and conquer
- Throw more machines at it

It's a bit more complex...

Fundamental issues

scheduling, data distribution, synchronization, inter-process communication, robustness, fault tolerance, ...

Different programming models

Architectural issues

Flynn's taxonomy (SIMD, MIMD, etc.), network typology, bisection bandwidth UMA vs. NUMA, cache coherence

Different programming constructs

mutexes, conditional variables, barriers, ... masters/slaves, producers/consumers, work queues, ...

Common problems

livelock, deadlock, data starvation, priority inversion... dining philosophers, sleeping barbers, cigarette smokers, ...

The reality: programmer shoulders the burden of managing concurrency...

MapReduce in a Nutshell

- o What's different?
 - Runtime transparently handles system-level issues
 - Programmer focuses on solving the problem
- General problem structure:
 - Iterate over a large number of records
 - Shuffle and sort intermediate results
 - Aggregate intermediate reseteduce
 - Generate final output

MapReduce provides a functional abstraction:

- Programmer supplies "Mapper" and "Reducer"
- Runtime automatically handles everything else!

MapReduce Runtime

- Handles scheduling
 - Assigns workers to map and reduce tasks
- Handles data distribution
 - Gets map workers to the data
- Handles synchronization
 - Shuffles intermediate key-value pairs to reduce workers
- Handles faults
 - Detects worker failures and restarts
- Everything happens on top of distributed FS
 - GFS = Google File System

From MapReduce to Hadoop

- Google's proprietary MapReduce implementation is in C++
- Hadoop is an open-source MapReduce reimplementation in Java (lead by Yahoo)
 - HDFS is a reimplementation of GFS
 - Growing number of associated open source projects...

"Cloud Computing" Initiative

- Google/IBM's Academic Cloud Computing Initiative (October 2007)
 - Initial pilot institutions: Washington, Berkeley, CMU, MIT, UMD
- IBM provides UMD a Hadoop cluster
 - 20 machines (40 processors)
 - Couple of TB storage
 - Associated infrastructure support
- Maryland does good work with the cluster!
 - Use it to tackle open research problems
 - Use it in the classroom

Statistical Machine Translation

Chris Dyer (Ph.D. student, Linguistics)Aaron Cordova (undergraduate, Computer Science)Alex Mont (undergraduate, Computer Science)

 Conceptually simple: (translation from foreign *f* into English *e*)

 $\hat{e} = \arg\max_{e} P(e \mid f)$

 $\hat{e} = \arg\max_{e} P(f \mid e)P(e)$

Difficult in practice!

• Phrase-Based Machine Translation (PBMT) :

- Break up source sentence into little pieces (phrases)
- Translate each phrase individually

Phrasal Decomposition

Example from Callison-Burch (2007)

MT Architecture

The Data Bottleneck 0.6 Training time Translation quality 0.55 2 days Translation quality (BLEU) 1 day 0.5 Time (seconds) 12 hrs 0.45 6 hrs 3 hrs 0.4 1.5 hrs 45 min 30 min 0.35 15 min 0.3 1e+07 10000 100000 1e+06 Corpus size (sentences)

MT Architecture

We've built MapReduce Implementations of these two components!

HMM Alignment: Giza

HMM Alignment: MapReduce

HMM Alignment: MapReduce

What's the point?

- The hypothetical, optimally-parallelized version doesn't exist!
- MapReduce occupies a sweet spot in the design space for a large class of problems:
 - Fast... in terms of running time
 - Easy... in terms of programming effort
 - Cheap... in terms of hardware costs

Chris Dyer, Aaron Cordova, Alex Mont, and Jimmy Lin. **Fast, Easy, and Cheap: Construction of Statistical Machine Translation Models with MapReduce.** Proceedings of the Third Workshop on Statistical Machine Translation at ACL 2008, June 2008, Columbus, Ohio.

Beyond MapReduce

• Hadoop and HDFS provides a good start

- Everybody can play:
 - Different applications

 (e.g., from stat MT to biological sequence alignment)
 - Extensions to the programming model (e.g. MapReduceMerge)
 - Different hardware substrates (e.g., MapReduce on multicore, CELL, and GPU's)
- Development of a vibrant community
 - Academic-Industrial collaborations are the key
 - Government involvement: e.g., NSF's Cluster Exploratory (CLuE)

Education plays a critical role!

(Yang et al., SIGMOD 2007; Ranger et al., HPCA 2007; Kruijf and Sankaralingam, 2007; He et al., 2007)

Acknowledgements

- Google: Christophe Bisciglia, et al.
- IBM: Dennis Quan, Eugene Hung, et al.
- Thirteen bright students from UMD:

Chris Dyer (Linguistics Ph.D.)

> Alex Mont (CS ugrad)

Aaron Cordova (CS ugrad)

Punit Mehta (iSchool masters)

> George Caragea (CS Ph.D.)

Christiam Camacho (iSchool masters)

Tamer Elsayed (CS Ph.D.)

> Greg Jablonski (iSchool masters)

Alan Jackoway (CS ugrad)

> Denis Filimonov (Linguistics Ph.D.)

Hua Wei (Geography Ph.D.)

> Mike Schatz (CS Ph.D.)

