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Introduction

o In text processing, we've seen the emergence
and dominance of:

Empirical techniques
Data-driven research

o Must scale up to larger datasets, or else:

Uninteresting conclusions on “toy” datasets
Ad hoc workarounds (e.g., approximations)
Unreasonably long experimental turnaround

o How do we practically scale up?

Managing concurrency is difficult
Clusters are expensive
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How much data?

o Wayback machine has ~2 PB (2006)

o Google processes 20 PB a day (2008)

o “all words ever spoken by human beings” ~ 5 EB
o CERN'’s LHC will generate 15 PB a year (2008)
o NOAA has ~1 PB climate data (2007)

mgrmmmrar” 640K ought to be
24 enough for
) { " anybody.
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What to do with more data?

o Answering factoid questions

Pattern matching on the Web
Works amazingly well

Who shot Abraham Lincoln? —» X shot Abraham Lincoln

o Learning relations

Start with seed instances
Search for patterns on the Web
Using patterns to find more instances

Wolfgang Amadeus Mozart (1756 - 1791)
a Einstein was born in 1879

Birthday-of(Mozart, 1756) @

Birthday-of(Einstein, 1879) @ PERSON (DATE

PERSON was born in DATE

(Brill et al., TREC 2001; Lin, ACM TOIS 2007) . UNIVERSITY OF
(Agichtein and Gravano, DL 2000; Ravichandran and Hovy, ACL 2002; ...) ]-SChOOl . MAR! I AND



Scaling Up: Present Solution

o Divide and conquer

o Throw more machines at it

“Work”

Partition
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It’s a bit more complex...

Fundamental issues Different programming models
scheduling, data distribution, synchronization, Message Passing Shared Memory
inter-process communication, robustness, fault ) |
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Architectural issues
Flynn’s taxonomy (SIMD, MIMD, etc.),

network typology, bisection bandwidth Different programming constructs

UMA vs. NUMA, cache coherence o . :
mutexes, conditional variables, barriers, ...
masters/slaves, producers/consumers, work queues, ...

Common problems

livelock, deadlock, data starvation, priority inversion...
dining philosophers, sleeping barbers, cigarette smokers, ...

The reality: programmer shoulders the burden
of managing concurrency...
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MapReduce in a Nutshell

o What's different?

Runtime transparently handles system-level issues
Programmer focuses on solving the problem

o General problem structure:

v, Iterate over a large number of records
a?';&tract something of interest from each
Shuffle and sort intermediate results

: : du(‘,e
Aggregate intermediate resnp(e
Generate final output

o MapReduce provides a functional abstraction:

Programmer supplies “Mapper” and “Reducer”
Runtime automatically handles everything else!
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MapReduce Runtime

o Handles scheduling
Assigns workers to map and reduce tasks

o Handles data distribution
Gets map workers to the data

o Handles synchronization
Shuffles intermediate key-value pairs to reduce workers

o Handles faults
Detects worker failures and restarts

o Everything happens on top of distributed FS
GFS = Google File System
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From MapReduce to Hadoop

o Google’s proprietary MapReduce implementation
IS In C++

o Hadoop is an open-source MapReduce
reimplementation in Java (lead by Yahoo)

HDFS is a reimplementation of GFS
Growing number of associated open source projects...
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“Cloud Computing” Initiative

o Google/IBM’s Academic Cloud Computing
Initiative (October 2007)

Initial pilot institutions: Washington, Berkeley, CMU,
MIT, UMD

o IBM provides UMD a Hadoop cluster

20 machines (40 processors)
Couple of TB storage
Associated infrastructure support

o Maryland does good work with the cluster!

Use it to tackle open research problems
Use it in the classroom
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Statistical Machine Translation

Chris Dyer (Ph.D. student, Linguistics)
Aaron Cordova (undergraduate, Computer Science)
Alex Mont (undergraduate, Computer Science)

o Conceptually simple:
(translation from foreign f into English e)

é=argmax P(e| f)
é=argmax P(f |e)P(e)
o Difficult in practice!

o Phrase-Based Machine Translation (PBMT) :

Break up source sentence into little pieces (phrases)
Translate each phrase individually
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Phrasal Decomposition

er geht ja nicht nach hause
he IS es not after house
E [ ; E are 3 i([ YIS J) E do not 3 E 0 )} E_Wg
( AL ) (__goes ) (_.ofcourse ) (_cdoesnot ) (_ accordingto ) (_chamber )
( .he ) ¢ go ) ( ) ( isnot ) in J__( athome )
( iis D not Yy home )
C hie will be D I ¢ 1S not Yy under house D)
C Tgoes Yy C does nol Y C return home 9
( he goes ) ( do not ) ( do not )
( 1S J 10 J
( are Yy ( following )
( is afer all Y not after )
( does Yy ot 10 )
( not J
( 'S nol )
( are not )
( 15 not a )
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MT Architecture

Training Data

I saw the small table
vi lamesa pequefia
Parallel Sentences

he sat at the table
the service was good

Target-Language Text

T

Word Alignment Phrase Extraction

> la

mesa
pequena

(vi, i saw)

Vu"

(lamesa pequefia, the small table)

Language
Model

Translation
Model

maria no daba una bofetada a la bruja verde

Foreign Input Sentence

\ /

Decoder —\L

mary did not slap the green witch
English Output Sentence
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The Data Bottleneck
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MT Architecture

We’'ve built MapReduce Implementations
of these two components!

Training Data Word Alignment } ’ Phrase Extraction \
o | I I
& o D

: s SSSE b i saw) I
| saw the small table vi[@ -l | ’ ~ |
vi lamesa pequefia tal | | —|>|I (la mesa pequeiia, the small table) i
Parallel Sentences mesd e I° - i

pequena [ ] ' I \l/

hesat at thetable  _ | Language Translation
the service was good Model Model

Target-Language Text

\ /

Decoder —\L

maria no daba una bofetada a la bruja verde mary did not slap the green witch
Foreign Input Sentence English Output Sentence
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HMM Alignment: Giza
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HMM Alignment: MapReduce

| HIVIIVI éllignment (éiza tloolklit) A
HMM alignment (MapReduce implementation) —4—
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HMM Alignment: MapReduce

HMM alignment (hypothetical, optimally-parallelized) ---4---
HMM alignment (MapReduce implementation) —a—
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What’s the point?

o The hypothetical, optimally-parallelized version
doesn’t exist!

o MapReduce occupies a sweet spot in the design
space for a large class of problems:

Fast... in terms of running time
Easy... in terms of programming effort
Cheap... in terms of hardware costs

Chris Dyer, Aaron Cordova, Alex Mont, and Jimmy Lin. Fast, Easy, and Cheap:
Construction of Statistical Machine Translation Models with MapReduce.

Proceedings of the Third Workshop on Statistical Machine Translation at ACL 2008,
June 2008, Columbus, Ohio.
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Beyond MapReduce
o Hadoop and HDFS provides a good start

o Everybody can play:
Different applications
(e.qg., from stat MT to biological sequence alignment)

Extensions to the programming model
(e.g. MapReduceMerge)

Different hardware substrates
(e.g., MapReduce on multicore, CELL, and GPU’s)

o Development of a vibrant community

Academic-Industrial collaborations are the key

Government involvement: e.g., NSF’s Cluster
Exploratory (CLUE)

o Education plays a critical role!

: . G . UNIVERSITY OF
(Yang et al., SIGMOD 2007; Ranger et al., HPCA 2007; Kruijf m’
and Sankaralingam, 2007; He et al., 2007) ]-SChOOl k- MAR! I ,AND
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